The Large UV/Optical/Infrared Surveyor (LUVOIR) Decadal Mission Concept Study Update for the 2019 IEEE Aerospace Conference Jason Hylan on behalf of the LUVOIR Mission Concept Study Team NASA Goddard Space Flight Center http://www.masa.gov/goddard • Electromechanical Systems Branch (544) • (301) 286-9496 • jason.e.hylan@nasa.gov #### Are we alone in the universe? Are we unique? How did we come to be? LUVOIR is designed to answer those questions and accomplish amazing science for a broad range of the astronomical community... ...and answer questions we can't conceive of today.... # What is LUVOIR? #### What is LUVOIR - Large Ultraviolet Optical Infrared Surveyor - https://asd.gsfc.nasa.gov/luvoir/ - LUVOIR is a large space telescope in the tradition of the Hubble Space Telescope with design aspects from the James Webb Space Telescope - Broad science capabilities - Far-UV to Near-IR bandpass - Suite of imagers and spectrographs - Serviceable and upgradable - Hubble-like guest observer program - At this time, LUVOIR is not a single design, rather it is two distinct concepts that bookend a breadth of design options for the astronomical community. #### The Decadal Survey - The Astrophysics Division of NASA's Science Mission Directorate commissioned the study of four large mission concepts for consideration by the 2020 Decadal Study. - LUVOIR is one of those mission concepts - The Habitable Exoplanet Observatory (HabEx), the Origins Space Telescope (OST), and the Lynx X-ray Observatory represent the other 3 mission concepts. Never before has NASA studied mission concepts in so much detail PRIOR to a decadal survey! # Where are we in the process? #### **LUVOIR Mission Concept Study Timeline** The Mission Concept Studies are nearing the delivery of their final reports. #### **The Mission Architecture** # The Observatory Segment ### **LUVOIR-A** #### **LUVOIR-B** Renderings courtesy of Andrew Jones (GSFC) ## The Observatory – Scope and Size **HST / WFIRST On-Axis Design** **JWST** 2.4m Primary Mirror 6.5m Primary Mirror **On-Axis Design** **LUVOIR-B 8m Primary Mirror Off-Axis Design** **LUVOIR-A 15m Primary Mirror On-Axis Design** 12 # The Observatory **Observatory Segment** # The Observatory Segment **Payload Element** # **The Payload Element** # Payload: Optical Telescope Assembly # Payload: Optical Telescope Assembly 17 #### Payload: Extreme Coronagraph for Living Planetary Systems | ECLIPS | | | | | | |-------------------|--|----------------------|--------------------------------|------------------------------------|--------------------------------| | Science Objective | Survey sun-like (F,G,K) stars in the local neighborhood and search for exoplanets within an annular region around the star defined by the inner-working angle (IWA) and outerworking angle (OWA) ▶ Directly image exoplanets via high-contrast imaging and spectrally characterize the atmospheres of those planets via medium and high resolution spectroscopy ▶ Emphasis is on the search for biosignatures on earth-like planets within the habitable zone, though all planets will receive some degree of characterization | | | | | | Channels | uv | Optical | | NIR | | | Bandwidth | 200 - 525 nm | 515 nm - 1.03 micron | | 1 - 2 microns | | | Modes | Imager | Imager | Integral Field
Spectrograph | High
Resolution
Spectrograph | Integral Field
Spectrograph | | Heritage | CGI on WFIRST (high contrast coronagraph) | | | | | Renderings courtesy of Andrew Jones (GSFC) 07-Mar-2019 ### Payload: LUVOIR Ultraviolet Multi-object Spectrometer | LUMOS | | | | | | | |-------------------|---|--|---------------|--|--|--| | Science Objective | LUMOS is the primary ultraviolet instrument on LUVOIR, incorporating multiple observations Multi-object, multi-resolution spectroscopy in the FUV and NUV for highly multiplexed spatially-resolved spectroscopy Wide field-of-view imaging in the FUV Point-source high-resolution spectroscopy | | | | | | | Channels [A] | FUV/NUV/VIS | | FUV | FUV | | | | Bandwidth [A] | 100 nm - ~1 micron | | 100 - 200 nm | 100 - 200 nm | | | | Modes [A] | FUV Multi-
object, multi-
resolution
Spectrograph | NUV/VIS
Multi-object,
multi-
resolution
Spectrograph | Imager | FUV Point Source (via MS) / Fixed High-Resolution Spectrograph | | | | Field of View [A] | 2 x 2 arc•min | | 2 x 2 arc•min | ~1 arcsec | | | | Channels [B] | FUV/NUV/VIS | | | FUV | | | | Bandwidth [B] | 100 nm - ~1 micron | | | 100 - 200 nm | | | | Modes [B] | FUV/NUV/VIS
Multi-object,
multi-
resolution
Spectrograph | FUV Multi-
object, multi-
resolution
Imager | | FUV Point Source (via MS) / Fixed High-Resolution Spectrograph | | | | Field of View [B] | 2 x 2 arc•min | | | ~1 arcsec | | | | Heritage | STIS & COS on the Hubble Space Telescope (detectors, optics, designs); NIRSpec on JWST (spectrograph with microshutters for multi-object capability); Sounding rocket instruments CHESS, SISTINE, and FORTIS (microshutters) | | | | | | National Aeronautics and Space Administration # **Payload: High Definition Imager** | HDI | | | | | |-------------------|--|---------------------|--|--| | Science Objective | ▶ Detect Lyman continuum flux for z > 7 galaxies to probe re-ionization structure and test models for reionization ▶ Measure Galaxy Luminosity Function down to 34 absolute magnitude to test basic models of galaxy formation ▶ Detect stars below the main sequence turn-off in galaxies out to a distance of 10 Mpc and measure their colors and luminosities to reconstruct star formation histories and ages ▶ Study small-scale structure within z > 2 galaxies, down to 100 pc, in UV and visible to study growth of substructure and morphology ▶ Constrain dark matter distribution and properties by measuring proper motions of stars in Local Group galaxies, and proper motions of galaxies within 15 Mpc of the Milky Way ▶ Potentially detect exoplanets via their induced astrometric wobble signature on their host stars; identify Earth-mass planets within the habitable zone regions ▶ Map the distribution of small bodies in the outer solar system, including the identification of dwarf to full-size planetary objects in the outer Kuiper belt ▶ Measure the 3-D structure in the atmospheres of the gas giants and Venus ▶ Survey the presence of orbital debris around small bodies (asteroids, centaurs, KBOs) in the solar system | | | | | Channels | UVIS | NIR | | | | Bandwidth | 200 nm - ~1 micron | ~1 - 2.1 micron | | | | Modes | Imager | Imager | | | | Field of View [A] | 2.91 x 2.11 arc∙min | 2.94 x 2.17 arc•min | | | | Field of View [B] | 2.69 x 1.78 arc∙min | 2.71 x 1.79 arc•min | | | | Heritage | Wide Field Camera 3 on Hubble (imager), WFI on WFIRST (imager), NIRCam on JWST (Wavefront sensing), FGS on JWST (fine guidance) | | | | # Payload: Pollux | Pollux | | | |-------------------|--|--| | Science Objective | The Pollux instrument is currently being studied by a consortium of European partners, led by the Centre national d'etudes spatiales (CNES). Although the Pollux instrument is a proof-of-concept demonstration of an instrument that would work with either LUVOIR architecture, the specific implementation being studied as the fourth instrument on the LUVOIR-A architecture. Pollux is a UV spectropolarimeter that complements the LUMOS instrument in both capability and scientific objectives. It combines high-resolution (R > 120,000) spectroscopy in the far- and near-UV (~100 – 400 nm) with polarimetry. The Pollux instrument study is still ongoing. | | | Channels | FUV / NUV | | | Bandwidth | 100 - 400 nm | | | Modes | Spectropolarimeter | | LUVOIR rendering courtesy of Andrew Jones (GSFC) / Pollux rendering courtesy of CNES ### Payload: Payload Articulation System Rendering courtesy of Andrew Jones (GSFC) Rendering courtesy of Matt Bolcar (GSFC) ### The Spacecraft Element 23 Renderings courtesy of Andrew Jones (GSFC) ### **Spacecraft: The Sunshade** Renderings courtesy of Andrew Jones (GSFC) #### The Launch Segment - LUVOIR A requires both the volume and the launch capacity of an SLS Block 2 Cargo Launch Vehicle. - LUVOIR B will *fit* into a "conventional" 5m fairing but requires a launch *lift* capacity of nearly 20,000kg. This dictates a need for the SLS Block 1B Cargo Launch Vehicle - Commercial launch vehicles such as the SpaceX BFR could launch LUVOIR-B. - Further refinement of the design could enable even more launch vehicle options such as the Blue Origins New Glenn. SLS renderings courtesy of NASA / LUVOIR renderings courtesy of Andrew Jones (GSFC) ### The Ground Segment ### Implementation Schedule – LUVOIR A ### Implementation Schedule – LUVOIR B #### **Technology Development** 29 #### Future Work for the Study Team - Complete any remaining engineering work - Continue to refine LUMOS A - Frequency analysis optimization - Jitter analysis - Complete writing the final report for NASA HQ and the decadal survey team. Jason Hylan - GSFC (LUVOIR Mission Concept Study Update v8.pptx) Outside of the Study Team, technology development is continuing both at NASA and with our industry partners.